
Edge Detection Using Convolutional Neural
Network

Ruohui Wang(B)

Department of Information Engineering, The Chinese University of Hong Kong,
Hong Kong, China

wr013@ie.cuhk.edu.hk

Abstract. In this work, we propose a deep learning method to solve the
edge detection problem in image processing area. Existing methods usu-
ally rely heavily on computing multiple image features, which makes the
whole system complex and computationally expensive. We train Con-
volutional Neural Networks (CNN) that can make predictions for edges
directly from image patches. By adopting such networks, our system is
free from additional feature extraction procedures, simple and efficient
without losing its detection performance. We also perform experiments
on various networks structures, data combination, pre-processing and
post-processing techniques, revealing their influence on performance.

Keywords: Deep learning · Convolutional neural network · Image
processing · Computer vision · Edge detection

1 Introduction

Edge detection is the task of identifying object boundaries within a still image
(see Fig. 1). As a fundamental technique, it has been widely used in image
processing and computer vision areas [1–5]. Accurate, simple and fast edge detec-
tion algorithms can certainly increase both performance and efficiency of the
whole image processing system. However, edges form in diverse ways. Finding a
universally applicable detection rule is hence not easy.

Conventional edge detection algorithms rely heavily on gradient computing [1].
Pixels with large gradient magnitude are labeled as edges. Other techniques, such
as non-maximum suppression [6], are usually combined to yield a better result.
These methods are all based on the assumption that color or intensity changes
sharply on the boundary between different objects while it remains unchanged
within one object. Unfortunately, this is not always true. Large color gradient can
appear on texture within one object while small color gradient can also appear on
object boundaries.

Having realized the limitation of local gradient cues, recent works start to
introduce learning techniques when designing edge detection algorithms [7–10].
Correspondence between object boundaries and image are learned from data
instead of based on man-made assumptions. However, traditional learning meth-
ods are usually not powerful enough to learn a direct mapping from image
c© Springer International Publishing Switzerland 2016
L. Cheng et al. (Eds.): ISNN 2016, LNCS 9719, pp. 12–20, 2016.
DOI: 10.1007/978-3-319-40663-3 2



Edge Detection Using Convolutional Neural Network 13

Fig. 1. An example of edge detection.

patches to edge predictions. People have to compute multiple color and gradient
channels or extract self-similarity features in order to get a rich representation
of the original image. As a result, such systems usually consist of multiple mod-
ules, which could be complex and inefficient. In the meantime, selecting proper
features usually requires domain knowledge and can affect both efficiency and
performance a lot.

Faced with such problems, we start to consider introducing powerful deep
learning techniques, such as convolutional neural network (CNN) [11], into the
edge detection problem. Unlike traditional shallow learning structures, deep
neural networks can learn hierarchical feature representations in their multiple-
layer structure. By adopting CNN, our edge detection system is free from extra
feature extraction or multiple channel computation, thus becomes straightfor-
ward and efficient.

On the other hand, CNN tends to capture local patterns from images in its
convolutional layers. This property also makes it a suitable tool for solving the
edge detection problem, because edges are usually locally correlated and exhibit
specific patterns, such as straight lines, corners, T-junctions and Y-junctions.

Motivated by these intuitions, we design a simple and efficient edge detection
system with CNN being adopted as the central part. In order to further simplify
the computation, we removed pooling layers in our networks. In order to select
an optimal network structure, we performed a lot of experiments on the popular
BSDS500 [1] dataset, comparing different network structures as well as data
combination, preprocessing and post-processing techniques (see Sects. 2 and 3
for detail). The best performance is achieved on a simple three-layer network
taking raw RGB color image patches as input without any preprocessing. By
adding non-maximum suppression to the whole system, the performance can be
further improved a little.

The rest of this paper is arranged as follow. In Sect. 2, we give an overview
of our CNN edge detector as well as some preprocessing and post-processing
techniques. In Sect. 3, we exploit different structures and data construction in our
experiments, and obtain insightful observations. Section 4 concludes the paper.



14 R. Wang

2 Edge Detection System

Figure 2 provides an overview of our edge detection system. Given an image,
we can first apply some preprocessing techniques [12] for noise removal. Then
a convolutional neural network scans over the entire image, making edge pre-
diction for every pixel based on the image patch centered on it. At last, non-
maximal suppression [6] or morphological operations can be further applied as a
post-processing step to thin the output edge map so as to increase localization
accuracy.

Input Image Convolutional
layers

fully connected

Output Edge Map

Post -
Processing 
(optional)

Thin Edge Map

Pre -
Processing 
(optional)

Original Image

Convolutional Neural Network

Fig. 2. An overview of our edge detection system.

2.1 Preprocessing

Natural images are sometimes degraded by noise. It is straightforward to apply
some noise removal algorithm first. Here, we choose a slight and smart algorithm
[12], which increases system complexity little.

2.2 Convolutional Neural Network

A Convolutional Neural Network works as the core component of our system.
It takes image patches as input and makes predictions on whether their central
pixels locate on an edge or not. Any network that fulfills this task can be adopted
in our system, but choosing the best network structure is not straight-forward.
We performed a thorough comparison on different network structures and the
best performance was achieved on a three-layered network whose structure and
parameters are summarized in Table 1.

Table 1. Network structure and parameters adopted in our system.

# Input size Layer type Filter size Stride Nonlinearity Output size

1 23*23*3 convolutional 5*5*3 3 ReLU 7*7*32

2 7*7*32 convolutional 3*3*32 2 ReLU 3*3*256

3 3*3*256 fully connected N/A N/A Logistic 1



Edge Detection Using Convolutional Neural Network 15

2.3 Post-Processing

As a common phenomenon, edges produced by detection algorithms usually
cover several pixels and are considered to be inaccurate [6,9,10]. In this regard,
non-maximal suppression [6] or morphological operation can be adopted to serve
as a post-precessing step, rendering a thinner edge map in the final output.

3 Experiments and Results

3.1 Data Set and Evaluation Method

We selected the most popular BSDS500 data set [1,13] for training and evaluat-
ing our edge detector. This dataset contains 500 natural images. For each image,
several people were asked to draw a contour map separating different objects
based on their own understanding. All 500 images are divided into 3 subsets,
with 200 for training, 100 for validation and 200 for testing. We strictly followed
the official guidelines [13] to train and tune our system exclusively on the train
and validation subsets, and to evaluate our results on the entire test subset with
provided benchmarking code [13].

3.2 Preparing Training Data

Before training our network, we need to prepare image patches and correspond-
ing ground truth that can be acceptable by our neural networks. The procedure
is summarized in Fig. 3.

Images

Edge Maps

Data
Set

Pre -
Processing 
(optional)

Crop 
Patchs

Pre -
Processing 
(optional)

Pick 
Ground -

truth

Train 
CNN

Fig. 3. Work flow on preparing training data.

First, we could apply some preprocessing techniques [12] to remove noise from
the original images. For each image in BSDS500, there are multiple corresponding
edge maps. In order to determine a single ground truth, we selected the most
sparse one or averaging the most spare two or three. Then we cropped images
into patches. For each image patch, we located it on the edge map and picked the
value at its center as corresponding ground truth label. At last, these patch-label
pairs were sent for training the neural network.



16 R. Wang

One key problem is that there are large numbers of negative samples, i.e.
patches whose center do not belong to any edge, compared to positive samples
(about 50:1). In order to balance the ratio between positive and negative samples,
we selected all positive samples and a small random partition of negative samples
for training the network, resulting the negative/positive ratio near 2:1.

3.3 Training Neural Networks

We used the cuda-convnet toolbox [14] to train our CNN on an NVIDIA Tesla
K40c GPU. The training process would last about 40 min for a three-layer net-
work, or nearly one day for a complex network. We always try to tune the
network parameters, such as number of filters and filters’ size, to avoid either
underfitting or overfitting. We stopped the training process if the error curve
converge or the error rate on the validation set achieve a minimum. Ordinary
error curves during the training steps are provided in Fig. 4.

Fig. 4. Ordinary error curves on training and validation sets.

3.4 Result

We evaluated our CNN edge detector using the original benchmark code provided
along with BSDS500 [13]. We tested on several networks with different structures
and image color channel combinations. The best performance was achieved by a
three-layered network taking raw RGB image patches as input. It is summarized
in Fig. 5 and Table 2 with comparison to other mainstream methods, including
the most widely used non-learning-based Canny edge detector [6] and several
learning-based algorithms [1,8,9,15]. Figure 6 shows some sample results of our
detector that of sketch tokens [9]. As shown in the comparison, our edge detector
is fast while achieving comparable performance with state-of-the-art methods.
Since our neural network contains only convolutional and fully connected layers,
algorithms such as [16] can also be adopted in our system to further speed it up
by several times or even tens of times.



Edge Detection Using Convolutional Neural Network 17

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

Pr
ec

is
io

n

Human
CNN
Sketch tokens
gPb−owt−ucm

Fig. 5. Precession-recall curves.

Table 2. Performance measurements.

ODS OIS AP Speed

Human .80 - - -

CNN (GPU) .69 .71 .71 2 s

Canny [6] .60 .64 .58 1/15 s

BEL [8] .67 - - 10 s

gPb [1] .71 .74 .65 60 s

gPb-owt-ucm [1] .73 .76 .73 240 s

SCG [15] .74 .76 .77 280 s

Sketch tokens [9] .73 .75 .78 1 s

Our network can also capture local edge structures. As shown in Fig. 7, filters
in the first convolutional show different color changes, capturing step edges or
textures. Both of them are local structures we want.

3.5 Comparison on Different Configurations

We have also tried different network structure, channel configuration, input size
of image patches and preprocessing techniques in our experiments.

Fig. 6. Results on images with textures. The first and second column shows the original
image and the ground truth respectively. The third and forth column shows the raw
output of our CNN and sketch token [9] respectively.



18 R. Wang

Fig. 7. Learned filters in the first convolutional layer.

Table 3 compares the performance when using different network structures.
We tried a complex network architecture consisting of three convolutional lay-
ers, three pooling layers and two fully connected layers. However, this complex
structure can hardly improve the performance while it takes much longer time
on training and overfits easily. Usually a network with two convolutional layers
and one fully-connected layer is enough for this problem. So we chose using this
structure in most our experiments.

Table 3. Performance comparison on using different network structures. L = locally
connected layer, P = pooling layer, C = convolutional layer, F = fully connected layer.

Image patch Network ODS OIS AP

gray LPLPLPFF .64 .66 .57

L0 smooth CCF .67 .68 .68

17*17*1 CCF(bias=0) .66 .68 .66

CIE+grad LPLPLPFF .64 .65 .64

17*17*8 CCF .64 .65 .63

CIE+grad CCF .68 .70 .70

21*21*8 CCFF .68 .69 .66

In our experiments, we tried four types of channel configuration of the input
image patches, (1) single gray scale channel, (2) RGB channels, (3) multiple
gray scale channels on different scales and (4) a combination of CIR-LUV, one
gradient magnitude and four gradient orientation channels, which is similar with
[9]. We found that gray level inputs worked a little bit worse than RGB inputs.
Multi-scale input hardly contributed to the performance. Multiple feature chan-
nels performed almost the same as RGB while requiring much more time on
training and consuming huge amount of memory. Based on these results, we can
demonstrate that there is no need to design extra feature extraction steps in our
method.

For patch size and preprocessing techniques, we found that the performance
would decrease if patch size was less than 17*17 and would not increase a
lot if patch size was beyond 21*21. L0 smooth [12] would usually increase
the performance when using single-channel gray-scaled image patches as input
while decrease the performance when using RGB. Table 4 is a conclusion of our



Edge Detection Using Convolutional Neural Network 19

Table 4. Performance comparison when using different input image patches.

Network Image Patch ODS OIS AP

Channel Size

CCFF CIE+grad 21*21*8 .68 .70 .70

CCFF RGB 35*35*3 .66 .68 .62

CF RGB 35*35*3 .63 .65 .60

CCFF RGB 25*25*3 .68 .70 .68

CCF RGB 23*23*3 .68 .70 .70

CCF RGB+L0 23*23*3 .66 .68 .62

CCF RGB 21*21*3 .68 .69 .65

CCF RGB 17*17*3 .67 .69 .63

CCF gray+L0 31*31*1 .67 .69 .70

CCF gray+L0 25*25*1 .67 .69 .69

CCF gray+L0 17*17*1 .67 .68 .68

CCF gray+L0 13*13*1 .65 .66 .60

CCF gray 3 scale 21*21*1 .65 .67 .65

CCF gray 4 scale 21*21*1 .64 .65 .60

experiment results. These results were achieved when applying morphological
thin in the post-processing step.

4 Conclusion

In this work, we developed a deep learning method for solving the edge detection
problem by using convolutional neural networks (CNN). Unlike previous work,
our approach does not need extra feature extraction process and can be very
simple and fast while achieving good result. It is also very easy for people to
implement and integrate our simple algorithm into their own computer vision
systems. Moreover, with deep learning becoming more and more popular, people
try using CNN in every field of computer vision. It is probably that our network
can be concatenated in front of the network used in other application. The whole
network can then be jointly fine tuned. This is a particular advantage of CNN
and have been studied in recent papers [17].

References

1. Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical
image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 33, 898–916 (2011)

2. Ferrari, V., Fevrier, L., Jurie, F., Schmid, C.: Groups of adjacent contour segments
for object detection. IEEE Trans. Pattern Anal. Mach. Intell. 30, 36–51 (2008)



20 R. Wang

3. Yokoyama, M., Poggio, T.: A contour-based moving object detection and tracking.
In: 2nd Joint IEEE International Workshop on Visual Surveillance and Perfor-
mance Evaluation of Tracking and Surveillance 2005, pp. 271–276. IEEE (2005)

4. Yilmaz, A., Li, X., Shah, M.: Contour-based object tracking with occlusion han-
dling in video acquired using mobile cameras. IEEE Trans. Pattern Anal. Mach.
Intell. 26, 1531–1536 (2004)

5. Vacchetti, L., Lepetit, V., Fua, P.: Combining edge and texture information for
real-time accurate 3d camera tracking. In: Third IEEE and ACM International
Symposium on Mixed and Augmented Reality, ISMAR 2004, pp. 48–56. IEEE
(2004)

6. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal.
Mach. Intell. 8, 679–698 (1986)

7. Zheng, S., Yuille, A., Tu, Z.: Detecting object boundaries using low-, mid-, and
high-level information. Comput. Vis. Image Underst. 114, 1055–1067 (2010)

8. Dollar, P., Tu, Z., Belongie, S.: Supervised learning of edges and object boundaries.
In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, vol. 2, pp. 1964–1971 (2006)

9. Lim, J.J., Zitnick, C.L., Dollár, P.: Sketch tokens: a learned mid-level represen-
tation for contour and object detection. In: 2013 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 3158–3165 (2013)

10. Dollár, P., Zitnick, C.L.: Structured forests for fast edge detection. In: 2013 IEEE
International Conference on Computer Vision (ICCV), pp. 1841–1848 (2013)

11. LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W.,
Jackel, L.D.: Backpropagation applied to handwritten zip code recognition. Neural
Comput. 1, 541–551 (1989)

12. Xu, L., Lu, C., Xu, Y., Jia, J.: Image smoothing via l 0 gradient minimization.
ACM Trans. Graph. (TOG) 30, 174 (2011)

13. Berkeley Segmentation Data Set and Benchmarks 500 (bsds500). (http://aiweb.
techfak.uni-bielefeld.de/content/bworld-robot-control-software/)

14. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: Advances in Neural Information Processing Sys-
tems, pp. 1097–1105 (2012)

15. Xiaofeng, R., Bo, L.: Discriminatively trained sparse code gradients for contour
detection. In: Advances in Neural Information Processing Systems, pp. 584–592
(2012)

16. Li, H., Zhao, R., Wang, X.: Highly Efficient Forward and Backward Propagation of
Convolutional Neural Networks for Pixelwise Classification (2014). arXiv preprint
arXiv:1412.4526

17. Ouyang, W., Wang, X.: Joint deep learning for pedestrian detection. In: 2013 IEEE
International Conference on Computer Vision (ICCV), pp. 2056–2063 (2013)

http://aiweb.techfak.uni-bielefeld.de/content/bworld-robot-control-software/
http://aiweb.techfak.uni-bielefeld.de/content/bworld-robot-control-software/
http://arxiv.org/abs/1412.4526


http://www.springer.com/978-3-319-40662-6


	Edge Detection Using Convolutional Neural Network
	1 Introduction
	2 Edge Detection System
	2.1 Preprocessing
	2.2 Convolutional Neural Network
	2.3 Post-Processing

	3 Experiments and Results
	3.1 Data Set and Evaluation Method
	3.2 Preparing Training Data
	3.3 Training Neural Networks
	3.4 Result
	3.5 Comparison on Different Configurations

	4 Conclusion
	References


